
Adaptive Filter Design using Stochastic Circuits

Honglan Jiang∗, Chengkun Shen†, Pieter Jonker‡, Fabrizio Lombardi§ and Jie Han∗
∗Department of Electrical and Computer Engineering

University of Alberta, Edmonton, AB T6G 1H9, Canada
Email: honglan@ualberta.ca, jhan8@ualberta.ca

†Harbin Institute of Technology, Harbin, Heilongjiang, China
‡Delft University of Technology, The Netherlands

§ Department of Electrical and Computer Engineering
Northeastern University, Boston, USA

Email: lombardi@ece.neu.edu.

Abstract—This paper proposes the design of an adaptive filter
in stochastic circuits. The proposed circuit requires lower area
and power than a conventional stochastic implementation. In the
proposed design, the stochastic multiplier is implemented by an
XNOR gate, as in a conventional scheme. However, the stochastic
adder based on a multiplexer is not a very efficient implemen-
tation due to the three required stochastic number generators
(SNGs) and the iterative operation required in the adaptive
filter. Thus, a novel stochastic adder using a counter and a post
processing unit is proposed. This adder avoids the use of SNGs,
therefore it incurs a smaller area and power, while operating
faster than the conventional (multiplexer-based) stochastic adder.
In terms of accuracy and hardware efficiency, simulation results
show that the adaptive filter using the proposed stochastic design
outperforms the conventional stochastic implementation using
linear feedback shift register (LFSR) based SNGs. Specifically,
the proposed design consumes 35.81% less dynamic power and
21.34% less area than an LFSR-based implementation at a
slightly higher accuracy.

I. INTRODUCTION

An adaptive filter is a negative feedback system consisting
of a linear filter with variable parameters adjusted by an
adaptive algorithm. It is commonly used in applications such as
image processing, signal prediction, system identification and
echo suppression [1]. However, the hardware implementation
of an adaptive filter is very complex because of the closed-loop
adaptive process and the adaptive algorithm [2]. Therefore,
it is important to reduce the area and power of an adaptive
filter for applications in mobile devices. Albeit involved in a
rather complicated computational process, the basic units in
an adaptive filter are adders and multipliers. Since adders and
multipliers can be efficiently implemented in stochastic circuits
[3], stochastic adders and multipliers are natural candidates for
consideration in the design of an adaptive filter.

In stochastic computing, a number is encoded into a
random binary bit stream using a stochastic number generator
(SNG). The SNG is a basic element in stochastic computing;
a widely used SNG consists of a random number genera-
tor (RNG) and a comparator (Fig. 1). Unipolar and bipolar
representations are the two widely used formats for stochas-
tic numbers. In the unipolar representation, a real number
x ∈ [0, 1] is represented by the probability of observing a
‘1’ at a bit position of a stochastic sequence. For the bipolar
representation, a real number y ∈ [−1, 1] is mapped from the
unipolar representation by y = 2x− 1 [4].

Random Number
Generator

A

B

A<B

Comparator

Stochastic
number

Binary number

k

k

clk

Fig. 1. A stochastic number generator.

Stochastic addition and multiplication can be simply im-
plemented by a multiplexer and an AND (for the unipolar
representation) or an XNOR gate (for the bipolar represen-
tation). Fig. 2 shows the implementations of the stochastic
multiplication and addition for the bipolar representation. The
accuracy of a stochastic computing result is limited by the
resolution and random fluctuations in stochastic sequences [5].
The random fluctuation is determined by the type of stochastic
sequences. The resolution is defined as the minimum value that
a stochastic sequence can represent. For a stochastic sequence
(in bipolar representation) with a length of l bits, its resolution
is 2/l. For example, the length of the stochastic sequence in
Fig. 2 is l = 8 and its resolution is 2/8 = 0.25. For the
stochastic multiplier in Fig. 2(a), therefore, the resolution of
the multiplication result is 0.25. However, the resolution for
the stochastic adder in Fig. 2(b) is reduced by 2× because the
addition result of the stochastic adder is S = (a1+a2)/2, and
the exact addition result is 2S. Hence, the minimum value that
can be represented in the addition result is 0.5, i.e., 2× of the
minimum value for the multiplier.

As shown in Fig. 2(a), a stochastic multiplier can effective-
ly reduce the circuit area and power consumption compared
to a binary array multiplier. However, a stochastic adder is
not a very efficient implementation because it requires three
SNGs that can be very complex compared to a binary adder.
Additionally, as the resolution is reduced by 2× in a stochastic
adder, the resolution for an adder tree in an adaptive filter
would be 2K× worse, where K is the number of stages of
the adder tree. Therefore, the addition result from the adder in
Fig. 2(b) cannot be directly used in the next iteration of the
adaptive filter.

In this paper, a novel stochastic adder using a counter and
a post processing unit is proposed. This adder avoids the use
of SNGs with no loss on the resolution, therefore it incurs
a smaller area and power dissipation, while still operating
faster than the conventional multiplexer-based stochastic adder.

a1=-0.5d

SNG

SNG
00010001s

01010101sa2=0d

P=10101010s=0d

(a) A stochastic multiplier based on an XNOR gate. P = a1a2.

a1=0.25d

SNG

SNG

SNG

0

1

10100011s

01110111s

10101010su

S=01110011s=0.5d

a2=0.5d

sel=0.5d

(b) A stochastic adder based on a multiplexer. S = (a1+a2)/2

Fig. 2. The stochastic (a) multiplier and (b) adder. The numbers
with the subscripts of d, s and su are numbers in decimal,
the bipolar stochastic and the unipolar stochastic formats,
respectively. The result of the adder is not accurate due to
random fluctuations and the limited resolution in the stochastic
sequences.

Moreover, low discrepancy (LD) sequences [6] used in quasi-
Monte Carlo (QMC) simulation rather than the commonly used
pseudo-random sequences (usually generated by an LFSR) are
applied. The LD sequence has a better uniformity, thus it
suffers less from random fluctuations. In this paper, the Halton
sequence is used due to its low complexity compared to other
LD sequences [7].

The adaptive filter is then applied to system identification
as an application. The simulation results show that the pro-
posed design consumes significantly less power and requires
a smaller area than the conventional stochastic implementa-
tion using multiplexer-based adders and LFSR-based SNGs.
Furthermore, performance and energy consumption of the pro-
posed design are also significantly better than the conventional
design.

This paper is organized as follows. Section II presents the
design of the adaptive filter using a stochastic multiplier and
the newly proposed adder. Section III shows the simulation re-
sults of the stochastic adaptive filter for hardware and accuracy;
a comparison with the conventional stochastic implementation
is also pursued. The paper concludes in section IV.

II. STOCHASTIC ADAPTIVE FILTER DESIGN

An adaptive filter uses a negative feedback loop to adjust
its parameters based on an adaptive algorithm. Fig. 3 shows
the basic structure of an adaptive filter, in which the linear
filter is implemented as a finite impulse response (FIR) filter
by [8]

y(n) = x(n) ·w(n) =

M−1∑
i=0

wi(n) · x(n− i), (1)

Linear Filter
w(n)

Adaptive Algorithm

∑
x(n)

∆w(n)

y(n)

d(n)

e(n)

+

-

Fig. 3. An adaptive filter [10]. n is the iteration number, x(n)
is the input vector, y(n) is the output signal, d(n) is the
interfered desired signal with the undesired noise, e(n) is the
error output, and w(n) is the weight vector.

where x(n) = [x(n), x(n − 1), · · · , x(n − M + 1)] is the
input vector, w(n) = [w0(n), w1(n), · · · , wM−1(n)]

T is the
weight vector at the nth iteration, and M is the length of
w(n). The weights of the linear filter are variable with the
iteration number n as determined by the adaptive algorithm.
They are updated until a set of optimized values are obtained.
There are many adaptive algorithms, e.g. the least mean square
(LMS), the normalized LMS (NLMS) and the recursive LMS
(RLMS) algorithms [9]. The selection of an algorithm is based
on a tradeoff between the computational complexity and the
convergence speed. As the LMS algorithm is very simple and
thus suitable for a hardware implementation, it is utilized in
this paper. The LMS algorithm is formulated as

wi(n+1) = wi(n)+µ·e(n)·x(n−i), i = 0, 1, · · · ,M−1 (2)

where µ is the step size, and e(n) = d(n)− y(n) is the error
signal between the interfered (desired) signal d(n) (with the
undesired noise) and the filter output y(n).

As per (1) and (2), a functional iteration of the adaptive
filter (i.e. the update process of the weights) can be divided
into a linear filter and LMS sections, which are implemented
by multipliers and adders (as shown in Fig. 4). In Fig. 4, the
error signal is computed by an adder tree within the linear
filter. 3M multipliers and 2M adders (M adders for the adder
tree in the linear filter and M adders for implementing the
LMS algorithm) are required for each iteration; this process
consumes a significant amount of power and incurs a large
area for a binary implementation. Therefore, power and area
efficient stochastic computing circuits are considered next. The
bipolar representation is applied because both positive and
negative numbers are processed by an adaptive filter.

A. Design of the Linear Filter

The multipliers in the linear filter are replaced by stochastic
multipliers implemented by XNOR gates. In addition to the
XNOR gate, two SNGs are required to convert binary numbers
to stochastic numbers [11]. Stochastic circuits using Halton
sequences have been shown to be faster and more accurate than
those using traditional LFSR-based sequences [7]. Therefore,
the Halton sequence is used as the stochastic sequence in
this paper. Two RNGs are shared among the SNGs of the
M multipliers (operating in parallel) to reduce the hardware
overhead at no loss of accuracy because correlation will not

μ

x(n)

w0(n)

x(n-1)

w1(n)

x(n-M+1)

wM-1(n)

...

∑

d(n)

+

-

-

-

e(n)

..
.

..
.

∑

∑

∑

..
.

+

+

+

..
.

w0(n+1)

w1(n+1)

wM-1(n+1)

w0(n)

w1(n)

wM-1(n)

+

+

+

Multiplier ∑ Adder

Linear Filter LMS

Fig. 4. An iteration of the adaptive filter implemented by
multipliers and adders. The addition in the linear filter is
implemented by an adder tree consisting of M adders.

..
.

Parallel
Counter

PPUp

..
.

-d(n)

eb(n)

k+1 k

x(n-1)

xs(n-1)

SNG

SNG
k

w1(n)

k

x(n-M+1)
xs(n-M+1)

SNG

SNG
k

wM-1(n)

k

SNG
k

x(n)

xs(n)

SNG

SNG
k

w0(n)

k

..
.

..
.

seq0

seq1

seqM-1

seqM

s

Fig. 5. Stochastic implementation of the linear filter. The post
processing unit (PPUp) converts the output of the parallel
counter to a binary number used for the SNG of the LMS.

cause an error in the addition result by the counter based adder
(as discussed next).

However, the conventional stochastic adder implemented
by a multiplexer is not very efficient due to its SNGs and
the loss of resolution as discussed in section I. Although the
SNGs (for the select signals of the multiplexers) can be shared
among adders at the same stage in an adder tree, the stochastic
sequences at different stages cannot be correlated with each
other to ensure an accurate addition. Therefore, many SNGs
are required for an adder tree. To address this problem, a
new stochastic adder is proposed; it consists of a multiple-
bit parallel counter and a post processing unit (Fig. 5). The
post processing unit is a simple circuit that performs shifting
and other simple logic functions.

Let the real number encoded in the stochastic sequence seqi
of the multiplication result in Fig. 5 be xi, i = 0, 1, · · · ,M
(where xi = wi(n) · x(n − i), i = 0, 1, · · · ,M − 1 and
xM = −d(n) in Fig. 5). As discussed, the bipolar stochastic

representation of a real number xi ∈ [−1, 1] is given by

xi =
2si
l
− 1, (3)

where si represents the number of 1’s in the stochastic se-
quence seqi and l is the length of the stochastic sequence. To
obtain the sum, the addition is performed on both sides of (3)

M∑
i=0

xi =
2
∑M
i=0 si
l

− (M + 1). (4)

Dividing (M + 1) on both sides leads to∑M
i=0 xi

M + 1
=

2
∑M
i=0 si

(M + 1)l
− 1. (5)

As per (3), the right side of (5) is another bipolar stochastic
representation of a real number with a sequence length of (M+
1)l, and the real number in the left side is the mean value of
xi, i = 0, 1, · · · ,M . It indicates that the direct concatenation
of (M + 1) stochastic sequences gives the mean of the real
numbers with a total sequence length of (M + 1)l; thus, the
resolution is preserved.

As y(n) =
∑M−1
i=0 wi(n) · x(n− i) =

∑M−1
i=0 xi, then

M∑
i=0

xi =

M−1∑
i=0

xi + xM = y(n)− d(n). (6)

Let s =
∑M
i=0 si be the number obtained from the output of

the parallel counter in Fig. 5. The error signal e(n) used for
updating the weights of the adaptive filter is obtained as

e(n) = d(n)− y(n) = (M + 1)− 2s

l
. (7)

(7) shows that subtraction and shifting can be used to
obtain the error output. To further simplify the hardware
implementation, a feature of the adaptive filter is utilized. For
the adaptive filter, all of its outputs and intermediate results
are in [−1, 1] as long as its input operators are in [−1, 1].
Therefore, e(n) is in [−1, 1], and thus 2s

l is in [M,M + 2].
Assuming l = 2k, 2s

l can be obtained by right shifting s for
k − 1 bits. Let the binary format of s be bm−1 · · · b1b0, then
2s
l = bm−1 · · · bkbk−1.bk−2 · · · b0, where m is the width of s

and m > k. Let 2s
l = xint + xδ , where xint = bm−1 · · · bk−1

and xδ = 0.bk−2 · · · b0 are the integral and fractional parts of
2s
l , respectively; then e(n) can be represented by

e(n) =

{
1− xδ, xint =M
−xδ, xint =M + 1
−1, xint =M + 2

. (8)

In (8), the value of xδ is 0 when xint = M + 2 because
e(n) must be in [−1, 1]. To implement the LMS algorithm,
e(n) is required to be mapped into the unipolar representation
by eu(n) =

e(n)+1
2 , as given by

eu(n) =

 1− xδ
2 , xint =M

1−xδ
2 , xint =M + 1

0, xint =M + 2
. (9)

For ease in a hardware implementation, the k-bit binary format
of eu(n) is given by

TABLE I. The Karnaugh map for estimating the value of xint
````````bkbk−1

m1m0 00 01 11 10

00 M X M+1 M+2
01 M+1 M M+2 X
11 X M+2 M M+1
00 M+2 M+1 X M

bk
m1

m0

bk-1

eb(n)[-2:-k]
bk-2:0

eb(n)[-1]

k-1
k-1

Fig. 6. The post processing unit of the parallel counter (denoted
as PPUp in Fig. 5).

eb(n) ={
1.00 · · · 0− 0.0bk−2 · · · b0, xint =M
0.10 · · · 0− 0.0bk−2 · · · b0, xint =M + 1
0.00 · · · 0, xint =M + 2

≈

 0.1bk−2 · · · b0, xint =M
0.0bk−2 · · · b0, xint =M + 1
0.0bk−2 · · · b0, xint =M + 2

,

(10)

where the results for the first two cases are approximated by
ignoring a bit of ‘1’ at the least significant bit, while the result
for the last case is accurate because bk−2 · · · b0 = 00 · · · 0
when xint =M + 2.

As there are only three cases for xint, the value of xint
can be obtained by comparing the two least significant bits of
xint and M . Table I shows the Karnaugh map for estimating
the value of xint, where m1m0 are the two least significant
bits of M . The value of xint is given by

dM = bk ⊕m1 ∧ bk−1 ⊕m0, (11)

dM+1 = bk ⊕m1 ∧ (bk−1 ⊕m0), (12)

dM+2 = (bk ⊕m1) ∧ bk−1 ⊕m0. (13)

where dM =‘1’ indicates xint = M , dM+1=‘1’ indicates
xint = M + 1, and dM+2=‘1’ indicates xint = M + 2. (10)
shows that the first two cases can be combined because only
their first fractional bits are different. Thus, bk−1 ⊕m0 is used
to produce the first fractional bit in (10), and bk ⊕m1 is used
to determine the inverting operation in (10), as shown in Fig.
6. Hence, only k + 1 bits of s are needed to obtain the error
signal e(n) and the width of the parallel counter can be set to
k + 1 because overflow does not affect the value of e(n).

B. Implementation of the LMS algorithm

As per (2), two multiplications and one addition are re-
quired to update each weight of the adaptive filter. As the initial
value of wi(M−1) is usually 0, the weight can be simplified to
wi(n) = µ ·

∑n−1
j=M−1 e(j)x(j−i) after n iterations. To further

simplify the multiplication, the step size µ is set to 2−q (q is
an integer). Thus the multiplication by µ can be realized by a

..
.

eb(n)

..
.

..
.

es(n)

Counterxs(n)

xs(n-1)

xs(n-M+1)

Counter

Counter

PPUs
w0b(n+1)

k

PPUs
w1b(n+1)

k

PPUs
w(M-1)b(n+1)

k

k+1

..
.

..
.

k+1

k+1

SNG
k

swM-1

sw0

sw1

Fig. 7. Stochastic implementation of the LMS algorithm. The
post processing unit (PPUs) converts the output of the serial
counter to a binary number used for the next iteration.

right shift operation. The remaining
∑n−1
j=M−1 e(j)x(j − i) is

implemented by a stochastic multiplier (XNOR) and counter
based adder, as shown in Fig. 7. The stochastic sequences of
the input vector (xs(n), · · · , xs(n −M + 1)) and the RNG
of the error signal are shared with the linear filter, which
significantly reduces the hardware of the stochastic multipliers.
In this design, the counter is a serial counter and the post
processing unit is similar to the one in Fig. 5 with some small
differences that are explained next.

The post processing unit performs the function of

wi(n) = µ · (2swi
l
− (n−M + 1)), (14)

where n is the iteration number of the adaptive filter and
swi is the output obtained from the serial counter. Let
the binary format of swi be bi(m−1) · · · bi0, then 2swi

l =
bi(m−1) · · · bikbi(k−1).bi(k−2) · · · bi0, where m is the width of
swi and m > k. Let 2swi

l = wint + wδ , where wint =
bi(m−1) · · · bi(k−1) and wδ = 0.bi(k−2) · · · bi0 are the integral
and fractional parts of 2swi

l , respectively; then wi(n) is given
by

wi(n) =

{
µ · (wδ − 1), wint = n−M
µ · wδ, wint = n−M + 1
µ, wint = n−M + 2

. (15)

The unipolar representation of the real number wi(n) is given
by

wiu(n) =


µ·wδ+1−µ

2 , wint = n−M
µ·wδ+1

2 , wint = n−M + 1
µ+1
2 , wint = n−M + 2

. (16)

Since µ = 2−q (q is an integer), for an implementation in
hardware the k-bit binary format of wiu(n) is given by

wib(n) = 0.01 · · · 1bi(k−2) · · · biq, wint = n−M
0.10 · · · 0bi(k−2) · · · biq, wint = n−M + 1
0.10 · · · 01bi(k−2) · · · biq, wint = n−M + 2

, (17)

where the more significant (q+ 1) bits for each case are con-
stant and the less significant (k− q−1) bits are bi(k−2) · · · biq
for all cases. The constant bits are obtained as shown in Fig.
8. Likewise, the width of the serial counter is k + 1 and the
resolution is kept the same for the adder.



bik
n1

n0

bi(k-1) wib(n)[-1]

wib(n)[-2]

..
.

..
.

wib(n)[-(q+1)]

wib(n)[-q]

Fig. 8. The post processing unit of the serial counter (denoted
as PPUs in Fig. 7). n0 and n1 are the two least significant bits
of the iteration number n.

III. SIMULATION RESULTS

The adaptive filter is employed to model an unknown
system as an application of system identification [12]. The
unknown system under consideration is a high-pass FIR filter
with specifications shown in Table II. The tap of the filter
is M = 103, and the step size for the adaptive algorithm is
given by 2−10. White Gaussian noise with a signal-to-noise
ratio (SNR) of 40 dB is added to the output signals of the
FIR filter system as interference noise.

The normalized misalignment is calculated to evaluate the
convergence performance of the proposed adaptive filter. It is
given by [13]

η(n) =
E{|h−w|2}
E{|h2|}

, (18)

where h is the impulse response of the unknown FIR system,
and w is the adaptive weight vector. A threshold is set for
the misalignment value to stop the simulation. For comparison
purposes, the same stochastic design is implemented by using
LFSR-based SNGs and the multiplexer-based adders.

In this simulation, the threshold value of the misalignment
is -6 dB, and the maximum number of iterations is 17000. A
sequence length of l = 212 bits is adopted for the proposed s-
tochastic design (12-bit), which is compared to an LFSR-based
implementation (20-bit) with a length of 220 bits. The addi-
tional 8 bits for the LFSR-based design is for compensating
the resolution loss caused by the multiplexer-based adder. The
proposed stochastic design requires 16518 iterations to reach
the misalignment threshold, while the LFSR-based stochastic
design cannot reach the misalignment threshold before the
number of iterations reaches the maximum value (17000). Fig.
9 shows the simulation results. The LFSR-based stochastic
implementation shows an inferior performance compared to
the proposed stochastic design at lower frequencies, while they
have a similar performance at higher frequencies. Furthermore,
the mean-squared error (MSE) and the misalignments of
the two implementations are also computed to measure the
average error and the speed of convergence. Fig. 10 shows
that the LFSR-based implementation produces larger errors
than the proposed stochastic design, while Fig. 11 shows that
the proposed design converges faster than the LFSR-based
implementation.

To evaluate hardware overhead, the two stochastic designs
are implemented in VHDL and synthesized by the Synopsys

TABLE II. The specifications of simulated high-pass filter.

Specification Value
Cut-off frequency fc 800 Hz

Sampling frequency fs 2000 Hz
Transition band bandwidth BW 20 Hz
Minimum stop-band attenuation -40 dB

Maximum peak-to-peak pass-band ripple 3.937 dB

0 0.5 1 1.5 2 2.5 3 3.5
Angular frequency normalized by  f

s

-80

-70

-60

-50

-40

-30

-20

-10

0

10

M
ag

ni
tu

de
 (

dB
)

Unknown system
Proposed design (12-bit)
LFSR-based implementation (20-bit)

Fig. 9. The system identification results by different designs.

0 2 4 6 8 10 12 14 16
Number of iterations ( ×1024)

-60

-50

-40

-30

-20

-10

0

M
ea

n-
sq

ua
re

d 
er

ro
r 

(d
B

)

14 15 16

-28

-26

-24

-22

-20

Proposed design (12-bit)
LFSR-based implementation (20-bit)

Fig. 10. The mean-squared error of the system identification
application.

design compiler in STM CMOS 28 nm technology. The supply
voltage and temperature are 1.0 V and 25 ◦C, respectively.
The area and timing results are reported by the Synopsys
design compiler, while the power dissipation is estimated by
the PrimeTime-PX tool using the value change dump file. The
results are shown in Table III. For a better comparison, the
values of the energy per operation (EPO) and throughput per



0 2 4 6 8 10 12 14 16 18
Number of iterations ( ×1024)

-7

-6

-5

-4

-3

-2

-1

0

M
is

al
ig

nm
en

t (
dB

)

Proposed design (12-bit)
LFSR-based implementation (20-bit)

Fig. 11. The misalignment results of the system identification
application.

TABLE III. The hardware characteristics of the adaptive filter
designs.

Design
Clock
period
(ns)

Maximum
frequency
(MHz)

Area
(µm2)

Dynamic
power
(mW )

Leakage
power
(µW )

EPO
(nJ

/operation)

TPA
(operation
/(s · µm2)

proposed
(12-bit) 3 1234.6 38,394 13.766 16.23 106.639 7.85

LFSR
(20-bit) 3 877.2 48,811 21.456 20.43 34,033.946 0.02

area (TPA) [14] are computed for the considered designs. The
EPO is defined as the energy consumed per binary operation
during one clock period, and the TPA is defined as the number
of binary operations per unit time and per unit area. They are
given by

EPO = top × Power, (19)

and
TPA = 1/(tmin ×Area), (20)

where top and tmin are the time required per operation (i.e., it
is the clock period for the binary design, and Clock period ×
Sequence length for the stochastic design) and the minimum
time required per operation, respectively. Power is the total
power consumption including the dynamic and leakage power.
Area is the utilized circuit area.

Table III shows that the proposed stochastic design has
a larger maximum frequency by 40.74%. It requires 21.34%
less area than the LFSR-based implementation and 35.81%
and 20.56% less dynamic and leakage power, respectively.
Moreover, the proposed design performs significantly better
than the LFSR-based implementation in terms of EPO and
TPA. Specifically, the LFSR-based implementation requires
more than 300× of energy and nearly 400× of area per
operation than the proposed design. These advantages are
mainly due to the improved resolution of the proposed adder.

IV. CONCLUSION

This paper proposes the design of a low-power and area-
efficient adaptive filter using stochastic computing circuits. A
counter based stochastic adder with no SNG is utilized in the
design to achieve a better computing accuracy because of its
improved resolution compared to the conventional multiplexer-
based adder. At a similar accuracy, the circuit area and
power consumption of the proposed design are lower than
a conventional LFSR-based stochastic implementation. The
performance and energy consumption of the proposed design
are also shown to be significantly better than those of the
LFSR-based implementation.

REFERENCES

[1] D. Comminiello, M. Scarpiniti, L. A. Azpicueta-Ruiz, J. Arenas-Garcia,
and A. Uncini, “Functional link adaptive filters for nonlinear acoustic
echo cancellation,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 21, no. 7, pp. 1502–1512, 2013.

[2] Y. Xin, W. X. Li, Z. Zhang, R. C. Cheung, D. Song, and T. W. Berger,
“An application specific instruction set processor (asip) for adaptive
filters in neural prosthetics,” IEEE/ACM Transactions on Computational
Biology and Bioinformatics, vol. 12, no. 5, pp. 1034–1047, 2015.

[3] P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. D. Riedel, “Computation
on stochastic bit streams digital image processing case studies,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22,
no. 3, pp. 449–462, 2014.

[4] B. R. Gaines, “Stochastic computing systems,” in Advances in Infor-
mation Systems Science, J. T. Tou, Ed. New York: Springer US, 1969,
vol. 2, ch. 2, pp. 37–172.

[5] J. Han, H. Chen, J. Liang, P. Zhu, Z. Yang, and F. Lombardi, “A
stochastic computational approach for accurate and efficient reliability
evaluation,” IEEE Transactions on Computers, vol. 63, no. 6, pp. 1336–
1350, 2014.

[6] I. L. Dalal, D. Stefan, and J. Harwayne-Gidansky, “Low discrepancy
sequences for monte carlo simulations on reconfigurable platforms,” in
2008 ASAP International Conference on Application-Specific Systems,
Architectures and Processors, 2008, pp. 108–113.

[7] A. Alaghi and J. P. Hayes, “Fast and accurate computation using
stochastic circuits,” in Proceedings of the conference on Design, Au-
tomation & Test in Europe, 2014, p. 76.

[8] S. Y. Park and P. K. Meher, “Low-power, high-throughput, and low-area
adaptive fir filter based on distributed arithmetic,” IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 60, no. 6, pp. 346–350,
2013.

[9] E. H. Krishna, M. Raghuram, K. V. Madhav, and K. A. Reddy,
“Acoustic echo cancellation using a computationally efficient transform
domain lms adaptive filter,” in 2010 10th International Conference on
Information Sciences Signal Processing and their Applications (ISSPA),
2010, pp. 409–412.

[10] N. V. Thakor and Y.-S. Zhu, “Applications of adaptive filtering to
ECG analysis: noise cancellation and arrhythmia detection,” IEEE
Transactions on Biomedical Engineering, vol. 38, no. 8, pp. 785–794,
1991.

[11] R. Wang, J. Han, B. Cockburn, and D. Elliott, “Design, evaluation
and fault-tolerance analysis of stochastic fir filters,” in Microelectronics
Reliability, vol. 57, no. 2, 2016, pp. 111–127.

[12] B. Farhang-Boroujeny, Adaptive filters: theory and applications. John
Wiley & Sons, 2013.

[13] M. Bekrani and A. W. Khong, “Convergence analysis of clipped
input adaptive filters applied to system identification,” in 2012 IEEE
Conference Record of the Forty Sixth Asilomar Conference on Signals,
Systems and Computers (ASILOMAR), 2012, pp. 801–805.

[14] R. Wang, J. Han, B. Cockburn, and D. Elliott, “Stochastic circuit
design and performance evaluation of vector quantization for different
error measures,” IEEE Transactions on VLSI Systems, accepted for
publication.


